If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2=500
We move all terms to the left:
4.9x^2-(500)=0
a = 4.9; b = 0; c = -500;
Δ = b2-4ac
Δ = 02-4·4.9·(-500)
Δ = 9800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9800}=\sqrt{4900*2}=\sqrt{4900}*\sqrt{2}=70\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-70\sqrt{2}}{2*4.9}=\frac{0-70\sqrt{2}}{9.8} =-\frac{70\sqrt{2}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+70\sqrt{2}}{2*4.9}=\frac{0+70\sqrt{2}}{9.8} =\frac{70\sqrt{2}}{9.8} $
| 2x+8=4(2x+2 | | 2x+8=4(2x+2) | | 5n+1=5+1-8n+8n | | 2x+3(x-5)=x+13 | | 5-(3x+18)=9x-1 | | 2/3m+1/3m=-3 | | -6p-38=2p+10 | | -5(2x-3)+4x=3(x+9) | | -3=5(y-5)+6y | | 3(w-8)=8w+21 | | 4=7(x-8)+8x | | 6x+4=12x-6x | | 4=-6v+8(v+3) | | 3(2x-7)=2(x-8) | | x+26+2x-20=180 | | 4(5x-7)=7-4(-5x+7) | | 2-8x=14-4x | | 0=-16t^2+94 | | 7(x+2)=3x+10 | | 9x+2=-x-18 | | 4x-1+2x=10x-9 | | 47=-16t^2+94 | | 6y-41-10=180 | | (4)=3x-7 | | -3/x=-6/3x+7 | | (9)=2x-3 | | 9+2(2x-1)=1 | | 3(x-12=27 | | 3y+4-6y=19 | | -25+12h=10h-19 | | -7+2x+1=8x-14+6 | | 8x+3=8x* |